Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.

Identifieur interne : 000477 ( Main/Exploration ); précédent : 000476; suivant : 000478

Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.

Auteurs : Fuxi Shi [République populaire de Chine] ; Yajun Wang [République populaire de Chine] ; Maryam Davaritouchaee [États-Unis] ; Yiqing Yao [République populaire de Chine] ; Kang Kang [Canada]

Source :

RBID : pubmed:33015496

Abstract

A major challenge in converting lignocellulose to biofuel is overcoming the resistance of the biomass structure. Herein, sequential dilute acid-alkali/aqueous ammonia treatment was evaluated to enhance enzymatic hydrolysis of poplar biomass by removing hemicellulose first and then removing lignin with acid and base, respectively. The results show that glucose release in sequential dilute acid-alkali treatments (61.4-71.4 mg/g) was 7.3-24.8% higher than sequential dilute acid-aqueous ammonia treatments (57.2-61.8 mg/g) and 283.8-346.3% higher than control (16.0 mg/g), respectively. Dilute acid treatment removed most hemicellulose (84.9%) of the biomass, followed by alkaline treatment with 27.5% removal of lignin. Roughness, surface area, and micropore volume of the biomass were crucial for the enzymatic hydrolysis. Furthermore, the ultrastructure changes observed using crystallinity, Fourier transform infrared spectroscopy, thermogravimetric analysis, and pyrolysis gas chromatography/mass spectrometry support the effects of sequential dilute acid-alkali treatment. The results provide an efficient approach to facilitate a better enzymatic hydrolysis of the poplar samples.

DOI: 10.1021/acsomega.0c03419
PubMed: 33015496
PubMed Central: PMC7528282


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.</title>
<author>
<name sortKey="Shi, Fuxi" sort="Shi, Fuxi" uniqKey="Shi F" first="Fuxi" last="Shi">Fuxi Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100</wicri:regionArea>
<wicri:noRegion>Yangling 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yajun" sort="Wang, Yajun" uniqKey="Wang Y" first="Yajun" last="Wang">Yajun Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Davaritouchaee, Maryam" sort="Davaritouchaee, Maryam" uniqKey="Davaritouchaee M" first="Maryam" last="Davaritouchaee">Maryam Davaritouchaee</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164</wicri:regionArea>
<wicri:noRegion>Washington 99164</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Yiqing" sort="Yao, Yiqing" uniqKey="Yao Y" first="Yiqing" last="Yao">Yiqing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100</wicri:regionArea>
<wicri:noRegion>Yangling 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Kang" sort="Kang, Kang" uniqKey="Kang K" first="Kang" last="Kang">Kang Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 22312 Wonderland Road North, London N0M 2A0, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 22312 Wonderland Road North, London N0M 2A0, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33015496</idno>
<idno type="pmid">33015496</idno>
<idno type="doi">10.1021/acsomega.0c03419</idno>
<idno type="pmc">PMC7528282</idno>
<idno type="wicri:Area/Main/Corpus">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000074</idno>
<idno type="wicri:Area/Main/Curation">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000074</idno>
<idno type="wicri:Area/Main/Exploration">000074</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.</title>
<author>
<name sortKey="Shi, Fuxi" sort="Shi, Fuxi" uniqKey="Shi F" first="Fuxi" last="Shi">Fuxi Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100</wicri:regionArea>
<wicri:noRegion>Yangling 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yajun" sort="Wang, Yajun" uniqKey="Wang Y" first="Yajun" last="Wang">Yajun Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Davaritouchaee, Maryam" sort="Davaritouchaee, Maryam" uniqKey="Davaritouchaee M" first="Maryam" last="Davaritouchaee">Maryam Davaritouchaee</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164</wicri:regionArea>
<wicri:noRegion>Washington 99164</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Yiqing" sort="Yao, Yiqing" uniqKey="Yao Y" first="Yiqing" last="Yao">Yiqing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100</wicri:regionArea>
<wicri:noRegion>Yangling 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Kang" sort="Kang, Kang" uniqKey="Kang K" first="Kang" last="Kang">Kang Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 22312 Wonderland Road North, London N0M 2A0, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 22312 Wonderland Road North, London N0M 2A0, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS omega</title>
<idno type="eISSN">2470-1343</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A major challenge in converting lignocellulose to biofuel is overcoming the resistance of the biomass structure. Herein, sequential dilute acid-alkali/aqueous ammonia treatment was evaluated to enhance enzymatic hydrolysis of poplar biomass by removing hemicellulose first and then removing lignin with acid and base, respectively. The results show that glucose release in sequential dilute acid-alkali treatments (61.4-71.4 mg/g) was 7.3-24.8% higher than sequential dilute acid-aqueous ammonia treatments (57.2-61.8 mg/g) and 283.8-346.3% higher than control (16.0 mg/g), respectively. Dilute acid treatment removed most hemicellulose (84.9%) of the biomass, followed by alkaline treatment with 27.5% removal of lignin. Roughness, surface area, and micropore volume of the biomass were crucial for the enzymatic hydrolysis. Furthermore, the ultrastructure changes observed using crystallinity, Fourier transform infrared spectroscopy, thermogravimetric analysis, and pyrolysis gas chromatography/mass spectrometry support the effects of sequential dilute acid-alkali treatment. The results provide an efficient approach to facilitate a better enzymatic hydrolysis of the poplar samples.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33015496</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2470-1343</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>ACS omega</Title>
<ISOAbbreviation>ACS Omega</ISOAbbreviation>
</Journal>
<ArticleTitle>Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.</ArticleTitle>
<Pagination>
<MedlinePgn>24780-24789</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsomega.0c03419</ELocationID>
<Abstract>
<AbstractText>A major challenge in converting lignocellulose to biofuel is overcoming the resistance of the biomass structure. Herein, sequential dilute acid-alkali/aqueous ammonia treatment was evaluated to enhance enzymatic hydrolysis of poplar biomass by removing hemicellulose first and then removing lignin with acid and base, respectively. The results show that glucose release in sequential dilute acid-alkali treatments (61.4-71.4 mg/g) was 7.3-24.8% higher than sequential dilute acid-aqueous ammonia treatments (57.2-61.8 mg/g) and 283.8-346.3% higher than control (16.0 mg/g), respectively. Dilute acid treatment removed most hemicellulose (84.9%) of the biomass, followed by alkaline treatment with 27.5% removal of lignin. Roughness, surface area, and micropore volume of the biomass were crucial for the enzymatic hydrolysis. Furthermore, the ultrastructure changes observed using crystallinity, Fourier transform infrared spectroscopy, thermogravimetric analysis, and pyrolysis gas chromatography/mass spectrometry support the effects of sequential dilute acid-alkali treatment. The results provide an efficient approach to facilitate a better enzymatic hydrolysis of the poplar samples.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Fuxi</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yajun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davaritouchaee</LastName>
<ForeName>Maryam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Yiqing</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Kang</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 22312 Wonderland Road North, London N0M 2A0, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Omega</MedlineTA>
<NlmUniqueID>101691658</NlmUniqueID>
<ISSNLinking>2470-1343</ISSNLinking>
</MedlineJournalInfo>
<CoiStatement>The authors declare no competing financial interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>23</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33015496</ArticleId>
<ArticleId IdType="doi">10.1021/acsomega.0c03419</ArticleId>
<ArticleId IdType="pmc">PMC7528282</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioresour Technol. 2013 Apr;134:347-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Jan;100(1):10-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Dec 1;101(5):913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Oct 15;107(3):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 May;327(5):455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):553-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Aug;214:266-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27136614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20004092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Oct;108(10):2300-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21520024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2002 Jan;81(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11708754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 Sep;288:121569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31181460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Aug;117:7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Jan;110(1):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22811319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2004 Jan 28;269(2):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2008 Aug;9(8):2194-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18636773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Aug 01;6(1):110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Apr;109:229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Dec 30;88(7):797-824</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Apr;182:296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2006 Sep 1;125(2):198-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2015 Jun 25;124:265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25839820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Mar 15;251(4999):1318-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17816186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(13):5694-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Jun;125(3):175-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(20):7812-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Apr;99(6):1664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17566731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Oct 18;9:217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27777619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Feb;100(3):1285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Apr 5;86(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2003 Oct;90(1):39-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Oct;102(19):8992-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2010 May;161(1-8):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20186502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Dec;101(23):8915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1982 Nov;24(11):2383-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Feb;109(2):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):2007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 Sep 25;50(20):5558-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12236679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<settlement>
<li>Tianjin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Shi, Fuxi" sort="Shi, Fuxi" uniqKey="Shi F" first="Fuxi" last="Shi">Fuxi Shi</name>
</noRegion>
<name sortKey="Wang, Yajun" sort="Wang, Yajun" uniqKey="Wang Y" first="Yajun" last="Wang">Yajun Wang</name>
<name sortKey="Yao, Yiqing" sort="Yao, Yiqing" uniqKey="Yao Y" first="Yiqing" last="Yao">Yiqing Yao</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Davaritouchaee, Maryam" sort="Davaritouchaee, Maryam" uniqKey="Davaritouchaee M" first="Maryam" last="Davaritouchaee">Maryam Davaritouchaee</name>
</noRegion>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Kang, Kang" sort="Kang, Kang" uniqKey="Kang K" first="Kang" last="Kang">Kang Kang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000477 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000477 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33015496
   |texte=   Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33015496" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020